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Abstract A systematic and readily propnunable computational method is given to exmct 
the S-function content of any arbitrary symmetric polynomial function. Applications to the 
derivation of new series and the outer product or skew division of an S-function by a series 'are 
shown. 

1. Introduction 

Schur functions or S-functions are symmetric polynomials whose importance stems from 
the fact~that they play a major role in the character theory of compact (Littlewood 1950, 
Wyboume 1970, Macdonald 1979) as well as non-compact Lie groups @owe er al 1985, 
King and Wyboume 1985). Operations on S-functions have been studied extensively, several 
S-functions series are  now^ well established and various methods have been devised to 
convert generating functions to their S-function content and vice versa (Littlewood 1950, 
Bender and Knuth 1972, McConnell and Newel1 1973, Burge 1974, King 1975, Macdonald 
1979, Xing et ~1 ,198  1, Black et 01 1983, Josefiak and Weyman 1985, Yang and Wyboume 
1986, Lascoux and Pragacz -1988). 

However, the importance of S-function series is not limited to the so-called 'classical' 
ones as Yang and Wyboume (1986) so rightfully pointed out in their systematic study of 
series. For example in the framework of the symplectic shell model (and their submodels) 
nuclear configurations are labelled by ([A}) @owe etal 1985, King and Wyboume 1985), the 
infinite-dimensional (holomorphic discrete series) irreps of the symplectic group Sp(2N.  R) 
with N = 3, where (A] is a standard S-function in not more than three parts. Since under 
the restriction of'Sp(2N. R) to its subgroup U(N) the symplectic irrep decomposes as 

({AI) J { A l .  D (1.1) 

and, inversely, one has 

{PI t ({PI. C) (1.2) 

the product of two symplectic irreps is given by 

(IAU({ul) = c({x)) 
c ( l X 1 )  = (IAlIv} : D )  (1.3) 

* Work supported by a grant from NSERC. 
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2180 M J Carvalho 

as can be seen by considering 

S p W .  R) .1 U W )  t Sp(2N- R) 

((Al)(Ivl)  .1 (AI . D ( 4 .  D T ({hllv}. D. D. C).  (1.4) 

The exploitation of (1.3) then involves the evaluation of the S-function content of the infinite 
series (A}{u}. D. 

On the other hand, it was shown in an earlier paper (Carvalho 1990) that the symplectic 
irreps that span the configuration space of a nucleus of mass number A can be found by 
evaluating the product of A copies of the infinite series of S-functions M followed by the 
product with the series C , i.e. 

C({h}) = (J4 . M .,hf.. . Iw,C). (1.5) 
A times 

Now, if the S-function content of either compound series (1.3) or (1.5) is obtained from 
the known S-function content of the classical series D or M and C, the resulting expansions 
appear ordered according to the increasing weight of the S-functions or, equivalently, the 
symplectic irreps appear ordered according to the increasing spherical harmonic oscillator 
energy content. However, neither do all irreps correspond to allowed nuclear configurations 
(due to the Pauli principle) nor are the configurations of lower spherical harmonic oscillator 
energy necessarily the most important ones. 

For A = 16, for example, irreps ({A]) for which the weight of the corresponding S- 
functions (A} is less than 12 do not correspond to possible configurations of “0 and, even 
for a light nucleus such as I6O, a configuration labelled by an S-function of weight 16 is 
more relevant to the description of its low-lying spectrum than one corresponding to an 
S-function of weight 14. 

Obviously, as the mass number A increases the minimum weight physically allowed 
increases and the relevant symplectic irreps are found at quite high spherical harmonic 
oscillator energy levels compared to the minimum. It is then desilable to have an economical 
method that produces those S-functions in the expansion that are of physical interest without 
having to generate all of them. 

It is with the above mentioned problem in mind and the fact that other algebraic models 
may encounter similar problems involving different series that the objective of this paper is 
to give a systematic procedure for the computation of the S-function content of any finite 
or infinite symmetric polynomial function. 

The organization of the paper is as follows. Definitions and relations between 
polynomials and S-functions are reviewed in section 2. In section 3, McConnell’s and 
Newell’s method is applied to a general symmetric polynomial. The S-function content 
of three general types of series is derived in section 4 and, in section 5, an algorithm is 
presented to calculate the multiplicity of a given S-function in the expansions. Finally, in 
section 6, some examples of the applicability of the method are shown. 

All illustratives examples throughout the text are kept simple so that the reader may 
check the results quickly by hand. 

2. Polynomials and S-functions 

A general S-function (or Schur-function), labelled by a set of I integers, called parts, 
{Al,Az,  ..., Ai], is a symmetric polynomial function of a set of p 2 1 indeterminates 
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ff1 a2. . . . , ap which can be given conveniently by the bideterminantal formula (McConnell 
and Newell 1973), 

det(a$'+'-s))l det(af-s) (2.1) 

where f, s = 1,. . . , p denote the rows and columns respectively of the p x p determinants. 
The integer I < p specifies the 'length' of the S-function, (i.e. the number of its nm-  
vanishing paas when in standard fonn) and w = AI  + A2 + . . . + A ,  denotes its 'weight'. 

For example, the sum of the monomial symmetric functions (Macdonald 1979) 

i f n > p  

i f n < p  

where each sum is taken over only those values of il, iz, . . . ading to distini terms, 
corresponds to the complete symmetric S-function [n), in one part only, which in accordance 
with definition (2.1) can be written as 

where A(=) is the Vandermonde determinant 

A(=) = det(cu/-") =n(q ~- aj). 
ic j 

On the other hand, the elementary symmetric functions (Macdonald 1979) 

e. = ~ a i z a i l . .  .a;n with n < p 

can be expressed in determinantal form as 

and corresponds to the S-function [I") (cf (2.1)). 

the condition hl 2 A2 2 . . . 2 A p  2 0. 

of the modification rule (Littlewood 1950) 

An S-function {AI A in Macdonald's notation) is said to be 'standard' if its paas satisfy 

Non-standard S-functions can be converted to standard ones by successive applications 

[AI, A.2, . . . Ai-k ,  ..., Ai, . . . , A p ]  = -(AI,  A2, ..., Ai - k, . . . , h;-k + k, . . . , A p )  (2.7) 
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derived from the rule for interchanging two columns in a determinant and the definition 
(2.1). On the other hand, in conformity with the fact that a determinant is zero if two of 
its columns are identical, a non-standard S-function vanishes if two of its parts are related 
by (cf again (2.1)) 

Ai-k = A i  - k. (2.8) 

Any standard S-function in I parts has I !  - ~ l  equivalent non-standard counterparts. 
For example. the standard S-function in three parts, [AI, Az, As), is equivalent to the five 
non-standard S-functions indicated in the following diagram: 

{ A I ,  12, A31 
r( I 

-[A2 - 1, A I  + 1, A31 

+{hz-l ,h3-1,hi+2] 

-(hir 1 3  - 1, + 11 
.1 .1 (2.9) 

+{A3 - 2, AI  + 1, Az + 11 

where the + or - signs are dictated by relation (2.7). If, for the particular values assumed 
by Ai,  either the ith part, pi, of a non-standard S-function satisfies pi c i - I or any two 
of its parts are related by (2.8), then this non-standard S-function vanishes identically. 

3. McConneII’s and Newell’s method 

The method of deteimining the S-function content of a series by means of an intermediate 
determinantal form of the generating function was first used, to great effect, by McConnell 
and Newell (1973). The technique is reviewed here as it is applied to obtain the S-function 
expansion of symmetric polynomials of the type 

where q1,qz. . . . , q p  are fixed non-negative integers and the sum includes all p !  
permutations of q l , q z ,  . . . , qp. Note that the number of indeterminates in which the 
polynomial function is expressed determines the maximum length of the S-functions 
appearing in the expansion. 

In the following, and for the sake of simplicity of presentation, the number of 
indeterminates is restricted to p = 3. Generalization of the results to a larger number 
of indeterminates is, however, straightforward. Let us then consider the S-function content 

The first step in implementing McConnell’s and Newell’s method is to multiply the 
of C@cu?aF. 

given polynomial by A@) (cf equation (2.4)) 

al 41 a* 42 a3 43 x A@) + a2 41 a, 42 a3 4, x A(a)  + ayara? x A(a) 

(3 .2~)  +a, 41 42 43 X A(a) +a2 41 a aI q3 x A(u) + ( Y ~ ( L ~ C L ?  x A(a) 



The next step is to regroup the monomial terms in such way that they can be arranged into 
six determinants each of the type given in the numerator of definition (2.1): 

3 

3 

(3.3) 

and now dividing (3.3) by A(w) to recover the original polynomial, we get, according to 
equation (2.1), the following set of S-functions 

Ea?'$@ = {9l92931 + {929l931 + {9143q2] f (93qlq21 + {q2939l} + (934291}. (3.4) 

Note that there are as many S-functions in the expansion (3.4). as monomial terms in the 
original polynomial. However, each S-function in (3.4) is built from contributions from all 
six monomial terms and the absence of one of them (unless identical to another existing 
term) makes the construction of the whole S-function expansion impossible. Note also that 
if ql # 92 # 93 only one of the S-functions is standard. Although for the objective of 
this paper it is not important to have the S-functions in standard form it is obvious that 
application of the modification d e s  to (3.4) yields a result analogous to that of Littlewood 
( 1950), namely 

where {A] are standard S-functions, in three parts, of weight 91 +, 92 + 93 and P).  their 
multiplicity. 
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4. Classical S-function series and their derivatives 

What is commonly called a ‘series of S-functions’ (Littlewood 1950) is a set of S-functions 
which have the same origin, the so-called ‘generating function’. The basic difference 
between a series and, for example, expansion (3.4) is the fact that the S-functions that 
constitute the series have increasing weights and (0) = 1 is always the first term. Some 
generating functions produce infinik series (i.e. there is no limit for the maximum weight) 
regardless of the number of indeterpinates in the polynomial function; others yield a finite 
number of S-functions, which is dependent on the number of arguments of the generating 
function. Three basic types of generating functions will be discussed in the following. 

4.1. Finite series 

4.1 .I. S-function series produced by the generating function. 

P 
n(1 - with r, k > 0. 

i 
(4.1) 

For k = 1 and r = 1 the resulting series has been identified in the literature (Yang and 

Defining the ‘symmetric power sum’ functions (Wyboume 1970, Macdonald 1979), p,, 
Wyboume 1986) as the series L; fork = 1 and r = 2 it is the series V .  

of the indeteminates ai, by 

and making use of the property that for any polynomial P(a) 

P(a) 8 pr  = P(a‘) 

where 8 denotes symmetrized product or ‘plethysm’, one concludes that (4.1) is then the 
generating function of the series [L 8 p7Ix. 

The S-function content of this series can be found by expanding the generating function 
(4.1) as a sum of symmetric polynomials of the type (3.l), as follows 

where 

and 

k! 
with i = 1.2 ,.... p .  (:) = fi!(k - ii)! 

(4.34 

(4.3b) 
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Since 11, 12, . . ., l p  take, independently, all integer values from zero to k and the 
coefficients a(k,. l l ,  12, . . . , l p )  are invariant under any permutation of a particular sequence 
of values ( 1 1 . 1 2 , .  . . , l p ) .  expansion (4.2) can be written as 

where, according to (3.4). 

produces p !  S-functions labelled by all permutations of rl,, rl2, . . . , rlP Therefore the 
S-function content of (4.1) is 

(4.4) 

For example, for p = 3, r = 2 and k = ~ 3  we have the following series: 

which can be quickly worked out to give, after conversion of the non-standard S-functions, 

V3={0]-33(2}+3{11}+3(4)-3(31)+9[22]-6(211) 

- 16) + (51} - 9142) + 81411) + 9[33] - 18[222] 

+ 3162) - 316111 - 31531 + 9 ( U }  - 614311 + 241422) - 181332) 

- 31641 + 31631) - 91622) + 3155) + 615323 - 241442) + 18(433] 

+ 166) - (651) + 9(642) - 916331 - 8[552) + 1814441 
- 31662) + 31653) - 9(644} + 6(5541+ 3(664) - 31655) - 1666). ( 4 3 )  

4.1.2. S-function series produced by the generating function 

n(l- (a~a j ) ' )~  
icj 

with r, k z 0. (4.6) 

For r = k = I ,  (4.6) is the generating function of the classical series A. Thus 

Expanding the polynomial function yields 

(4.7) 



Once again, since all integers Ilj assume values from zero to k and the coefficients 
a(k ,  112.113. . . . , I p - - l p )  are invariant under any permutation of fixed values of these variables, 
the polynomial (4.8) is equivalent to the S-function series: 

k k 2 c . . . x 4 k 3  I L Z .  113, .. ., IP-lp) 
1111 U,.. II,12,124..JZP 

xIr(112+113+...+11~), r (h+h.3+. . .+hP) ,  . . . , r ~ I ~ p + I z p + ~ ~ ~ + l p - ~ p ~ ~ .  

(4.10) 

For example, for p = 3, r = 2 and k = 2 series (4.10) reduces to 

(4.1 la) 

or explicitly 

I A  @ pzlZ = IO) - 2I22) + 2121 11 + I441 - 1431) + 41422) - 31337.1 
- 2[6421+ 2[633} + 215521- 61444) + I8441 - 1754) + 416641 - 3[655) 
- 2[8661+ 2{776] + {888]. (4.1 1 b) 

4.1.3. S-function series produced by the generatingfunction 

~ ( U O  + ulcuj +sa?+ u3a9 +. . . + una:)k 
P 

with k > 0. (4.12) 

Since 

k i l n  
(a0 + ulx + UZX* + u3x' + . . . + u.x")~ = ( g u n x q )  = c c ( u ;  k ,  I ,  n)x' (4.13) 

where c(u; k ,  I ,  n) are coefficients that incorporate the parameters ai and give, for particular 
values of k and n,  the occurrence of the t em X I  in the expansion, then 

1=0 

P P kn 

i i I=O 
n ( a o  + aiai + @a; + u3a: + . . . + = n c(u; k ,  I ,  n)aj 

= ~ 2 c(u; k ,  11, n)c(u; k ,  12, n) . . . c(a;  k ,  I p .  n) a:'$. . .et. (4.14) 
i,.h ,.... Ip=0 
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It can be easily checked that expansion (4.14) is a sum of symmetric polynomials, 
similar to (4.2) and (4.Q thus they correspond to the following S-function series: 

5 c(u; k, 11, n)c(a; k, 12, n )  . . . c(u; k, l,, n) . . . { l ~ ,  12, .  . . , I,]. (4.15) 
I, .I2 ..... In=O 

The multiplicity coefficients c(u; k, 11, n ) ,  obviously dictated from combinatorics, are treated 
in more detail in section 5. 

Some special examples of this series have been studied by Yang and Wyboume (1986). 
Lascoux and Pragacz (1988) and King et al (1989). 

Note that the generating function (4.1) can be considered a particular case of the 
generating function (4.12) with 

i = O  
I = r  
otherwise. 

4.2. Infrnite series 

It is obvious that for negative values of k the generating functions (4.1), (4.6) and (4.12) 
yield infinite expansions in the indetenninates'q and theiefore generate infinite series of 
S-functions. Expressing again the generating function as a sum  of polynomials of type 
(3:1), one gets then the expansions 

y (&>* = n I (%?>* i=o 

(4.16) m 
= m(k,l,)m(k, 1 2 ) .  . .m(k,I,) [r l l ,  rlz, . . ., rl,} 

/,.I2 ..... /,=o 

S (1 +ai +a: +. . . +a; 
1 

= 2 m(c;k,i,)m(c;k,Iz)...m(c;k,i,) { l ~ , l z .  ..., I,} (4.18) 
i , . i2  ...., ID=0 

where the multiplicity coefficients m(k, 1)  and m(c; k, 1 )  are given explicitly in the next 
section. 
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5. The multiplicity coefficients 

In the actual evaluation of the S-function content of a series one practical aspect to consider 
is the time it takes to generate all the desired terms. This time can be reduced considerably 
if an efficient algorithm exists to compute rapidly the multiplicity of each S-function in the 
series. 

A convenient way to implement the calculation of these multiplicities is to identify the 
coefficients multiplying each S-funition, such as c(u; k, l j ,  n )  or m(k, l j )  in (4.14) and (4.16) 
respectively, with the elements of a suitable matrix. 

Essentially, two types of matrix are needed to evaluate the coefficients appearing in the 
series presented in section 4. A matrix M"', from which the coefficients c(u; k,  1 ,  n )  can 
be extracted by making the   identification 

and whose elements, M")(i ,  j), are given by 
c(u; k ,  I ,  n )  = M")(k, I )  

i f j s n  
uj i f O < j < n  

M"'(1, j) = (5. la) 

for j z in 

for 0 < j < in C M " ' ( i  - 1, U) x ~ " ' ( 1 ,  j - v )  (I (5.16) 

M"'( i ,  j) = 

and a matrix M'", with an infinite number of columns, whose elements, defined by 
f o r i  = 1 and j = 0, 1,. . . ,03 

M"'(i, j) = { i,@J(i - 1, v )  x ~ ' ~ ' ( 1 ,  j - v )  for i  2 and j =0, 1, ..., M 

give the coefficients m(k, i) through the relation 
m(k, I )  = ML2'(k,  I ) .  

The set up of the above matrices follows straightfonvardly from a generalization of the 
binomial formula. 

For example, the coefficients required in the expansion of series (4.12) with n = 4, 
k = 3 and uo = a1 = u2 = 

(5.2) 

= u4 = 1 are obtained from the third row of the matrix 
1 1 1  1 1  0 0 0 0 0 0 0 0  

( 1 3 6 10 15 18 19 18 15 10 6 3 1 
M " ' =  1 2 3  4 5 4 3 2 1 0  

On the other hand, infinite expansions such as 
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involve the coefficients m(k,~l) which can be calculated from a matrix M(') with the elements 
of the first row being 

1 for (5.4) 
for (5.5) 

B' for (5.6). 

So, the coefficients needed in expansions (4.16) or (4.17) when, for example, k = 4 are 
given by the fourfh row of the matrix 

1 1 1  1 1  1 1 - 1  1 1  1 1  
M(2J = ( I  2 3 4 5 6 7 8 9 10 11 12 1::) 

1 3 6 10 15 21 28 36 45 55 66 78 ... ' 
(5.7) 

\ 1  4 10 20 35 56 84 120 165 220 286 364 ... / 
Now, the coefficients m(c; k, I ) ,  though not simple coefficients like the other two, 

can also be quickly computed. The coefficient m(c; k.1) could be called a 'compound 
coefficient' since, as shown in the following analysis, one needs both types of matrix to 
determine it. In fact, 

k W k 1 ) = ( X(-l)qx + x z  + . . . +P)')  ((1 + x  + x z  + . . . +X") 
{=O 

(5.8) 

where the coefficients c(a; 6. p, n )  aie first obtained from the 6th row of a matrix M") 
with parameters a0 = 0, a, = az = . . . = U, = 1 and then the coefficients m(c; k, I) are 
extracted from the kth row of a matrix of type M'2' whose elements on the first row are 

6. Aplications 

6.1. Generating other series 

From the three basic types (finite and infinite) of series given in section 4, others, more or 
less elaborate, can be derived easily. Take, for example, the so-called series C (Black et al 
1983) whose generating function is 
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This function is obviously the product of generating functions (4.1) (with r = 2 and k = 1) 
and (4.6) (with r = 1 and k = 1). ,Expanding (6.1) 

c = (-l)mt+mz+-+mp&h 
1 

I a2 
mi.mz ,  .... mp=O 

C =  2 
m I .mr ..... mo=O 1 1 d ~ ~  ..... lp+,=O 

x ( 2 m l +  112 + . . .+[I,, 2mz + 112 +. . . +h,, . . . , h, +!I, +. . . +1,-1.,1. 

(6.26) 

Comparing result (6.26) with (4.4) and (4.10) one can then g e n e d i e  and give the two 
following rules (cf also appendix A): 

When a compound generating function is made of partial generating functions whose S- 
function content is hown, then 

(i) each S-function, generated by the compound function, is derived from S-functions 
in the partial expansions (one from each), by adding their corresponding parts; 

(ii) the coefficient associated with each new S-function is the product of the coefficients, 
in the partial expansions, associated with the S-functions that give rise to this particular new 
S-function. 

If one restricts (6.26) to,S-functions with no more than two parts ( p  = 2) series C 
reduces to 

The possible combinations of values assumed by m l ,  mz and 1 and the S-functions to which 
they give rise are summarized in table 1. 

Since 4021 = +(11] and +I131 = 422) series C reduces further to 

C = (0) - { Z )  + {31] - (331. (6.4) 
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Table 1. Terms in the expansion of (6.3). 

2191 

m~ mz I tA1.121 

0 0 0 +to1 
1 0 0 -12) 
0 1 0 -102) 
0 0 1 -111) 
I 1 0 +122) 

0 1  1 +[I31 
1 1 1 -133) 

1 0 1 +{31) 

The series C3 = C x C x C is equally easy to generate. Restricting again to S-functions 
divided into no more than two parts, this new series is, in compact form, 

The set of S-functions that result from all possible combinations of values assumed by 
m1,mz and 1 (from zero to three) are, after reduction of equivalent S-functions, 

C3 = {O) - 3{2) + 3122) + 6{31) +3{4) - lO(33) 

- 9{42) - 8{Sl) - (6) + 6(44) + 18(53) + 9{62) + 3171) 

- 6I.55) - I8{64) - 9{73) - 3{82) + 10{66) + 9{75) + 8[84) 
+ {93} - 3(77) - 6(86) - 3(95) + 3{97) - (99). 16.6) 

Clearly, one advantage of this method is the possibility of deriving the S-function content 
of the product of k copies of a given series (or the product of any number of series) without 
having to determine the explicit expansion of each constituent series first. 

6.2. Occurrence of a particular S-function in a series 

The method advocated in this paper is particularly appropriate to the calculation of the 
multiplicity of a given standard S-function,in a series without having to generate the whole 
series. Consider, for example, the multiplicity of the S-function (444) in the series D", 
n 2 1, generated by 

Since (444) is equivalent to the non-standard S-functions {354], {435), (336). {ZS) and 
I2461 (cf 2.9), their multiplicities in expansion (6.7) have also to be taken into account. 

The S-function content of (6.7) is, according to (4.16) and (4.17), 



2192 M J Carvalho 

with 

c(n, VI, w.  LLII,Iz,W = m ( n ,  vl)m(n, vz)m(n, ~3)m(n,Il)m(n,Iz)m(n,13) 

where the restriction to p = 3 is justified since S-function (444) and its non-standard 
equivalents have length three. The coefficients m(n, v i )  and m(n, h ) ,  i = 1 , 2 , 3 ,  are 
obtained from the nth row of matrix (5.7). 

Table 2 shows the multiplicities of the above mentioned S-functions in the series D" 
for n = 3 and n = 10. These multiplicitites are obtained by adding up the coefficients 
c(n, VI, b, y, I I ,  I2 , I s )  corresponding to all possible combinations of U; and Ii that give rise 
to the particular S-function. The possible combinations of vi and li and their associated 
coefficients are given in tables 1-6 of appendix B. 

Table 2. Multiplicities of  (4441, (354). (4353. (246). (255) and (336) in expansion (6.8) for 
n = 3  andn = IO. 

Sfunction M u l ~  in D3 Mult in D'O 

(444) 4185 3925725 
(354) = -(444) 3555 333300 
(435) = -(U) 3555 3333000 
(246) = -(U) 2421 2 060 575 
(255) = +(U) 2610 213520 
(336) = +(444) 2792 2516800 

One can then conclude that the total multiplicity of (444) is 56 in the series D3 and 
29470 in D'O. It should be emphasized the fact that with this method both numbers are 
equally easy and fast to calculate. 

6.3. Outer product and skew division of an S-function by a series 

Another attractive feature of this method is the fact that one can easily evaluate the outer 
product or skew division of an arbitrary S-function by any series, without having to derive, 
beforehand, the series explicitly. 

Consider the outer product of the S-function {AI. A*. . . . , A,] by the series whose 
generating function is 

(6.9) 
The variables I 1 , l 2 ,  . . . , I ,  can take any integer value from zero to six and the corresponding 
coefficients are given by the second row of a M(" type matrix 

1 - 2 1 - 2 0  0 0 ( 1 -4 6 -8 9 -4 4 (6.10) 1. 
Expressing (At, J.2, . . . , A,] in determinantal form 

(6.1 1) 
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it is immediate that multiplication by the polynomial function (6.9) yields the series 

c(U;2,11,3) ... C(U;2,lp,3)(hi + I ~ , h z + I z  ,..., hp.+Ip].  (6.12) 
I ,  .h.....l, 

On the other hand, the skew division of (AI,  h2,.  . . , A,} by the same series is obtained 
by multiplying the determinant (6.1 1) by 

C(U;  2. I I ,  ~)c(u;  2,1zr 3). . .c(u; 2.1,. 3 ) ~ t ~ ~ ' ~ t ~ ~ ~ .  . .ap -b . (6.13) 
11.12 ...., l p  

The result is then 

C(U;  2; I , ,  3)clu; 2.12, 3 ) .  . .c@; 2, I p .  3){hl - II, hz.- 1 2 , .  . . , h, - 1,). (6.14) 
1,J2 ,.... 1, 

So, for example, the skew division of 12221 by the above series is in compact form 

Note that in a skew division the resulting series can never contain S-functions with a length 
greater than the length of the S-function being divided. So (6.15~) has naturally been 
restricted to three parts. The series (6.15~) can easily be expanded to give 

1222)-4(221]+6(22]+ 10{211] - 16(21) -24(111]+4(2]+37{11]-4[1)- 14(0). 

(6.15b) 

As an example of the outer product let us consider the S-function to be [Z) and the 
series the same as above, (6.9). The result is 

~ ( ~ ; 2 , 1 1 , 3 ) ~ ( ~ ; 2 , 1 2 , 3 )  ... ~(0;2,I , ,3)[2+fl , I~ ,..., I p ] .  (6.16~) 
Il.12 ..... I ,  

The maximum number of parts that the S-functions in the resulting series are allowed to 
have, has to be chosen now in order to truncate it. Taking p = 2 so that the list does not 
become tediously long, one has the following series 

I221 -41321 + 61421 + 10(33] - 8152) - 16[43} + 9162) 

+ 23(53} + 4(44) - 4(72] - 32(63] - 12(54} +4[82} + 12(73) 

+ 38t64) + 10(55] - 16(83] - 8(74] - 48(65] + 24(84} + 8{75] + 49[66) 

- 32(851- 4(76] + 36{86} - 20(77} - 16(87} + 16{88}. (6.17) 

In conclusion, obtaining a unified procedure for the actual evaluation of the S-function 
content of any homogeneous polynomial function whether it be the generating function of 
a known classical series or any other function not yet explored was attempted. Although 
the results of the examples given here can be checked by hand they have been generated 
by computer codes able to handle more elaborated situations. The method is such that 
programs can be straightforwardly customized. 
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Appends A 

Consider the two series whose generating functions are 

and its inverse 

The result of the outer product of these two series is obviously {O]  = 1. Let us see that 
this simple result follows from the rules, given in section 6, for determining the S-function 
content of a compound generating function from the S-function content of the composing 
functions. 

Given that the S-function content of (A.l) is 

5 m(2. I1)m(2,12). . .m(2, lp){211, 212, .  . . , 2 4 1  (A.3) 
l,.h ..__. I+ 

and of (A.2) 

then the S-function content of the generating function which is the product of (A.l) and 
(A.2) is 

'{211 +2ml,21~+2mz,...,~~+2m~l. (-4.5) ( - l )ml+mi+-+m 

In order to prove that expansion (AS) reduces to a single term, {O], note that any part 
i, hi = 21i + 2mi, of the S-functions in (AS) can only assume even integer values and that 
an arbitrary even integer, say 2k, can be obtained in three ways: 

mi = k, li = 0 
mi = k - 1, Zi =;I 

with a coefficient = k + 1 
with a coefficient = -2(k) [ mi = k - 2, li = 2 with a coefficient = k - 1 

where the associated coefficients are immediately derived from 

m(2, 1i) = lj + 1 
and 

Since the different parts assume values independently of each other then, with the exception 
of (01, all other S-functions appear with multiplicity zero. 
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Appendix B 
Table Al. Combinations of vi and l j  yielding (444). The c&cient associated with each 
combination is given in ule last WO columns for series D 3  and DLo respectively. The multiplicity 
of [444) in D3 is 4185 and in DIO 3925725. 

"I y y II 12 I, cwff. cwff. 
0. 0 0 2 2 2 ~ 2 1 6  166375 
0 0 1 3  1 1  270 220 000 
0 0 2 4 0 0 9 0  39 325 
0 I O  1 1  3 270 220000 
0 1 1  2 0 2 324 302500 
0 2 0 0 0 4 9 0  39 325 
1 0 0~ I 3 I 270 220 OaI 
I 0 1 2 2 0 3 2 4  302500 
I 1 0 0 2 2 3 2 4  302500 
1~ 1 1 1 I 1 729 IO00000 
1 1  2 2 0 0 324 302500 
I 2 1 0 0 2 3 2 4  302500 
2 0 0 0 4 0 9 0  39325 
2 1 1  0 2 0 324 302.500 
2 2 .2  0 0 0 216 . 166375 

Table A2, Combinations of vi and It yielding (354). The coefficient associafed with each 
combination is given in the last two columns for series D 3  and DI0 respectively. The multiplicity 
of (354) in D3 is 3555 and in DIo 3333000. 

YI "2 "3 11 h 13 COeff. 

0 0 0 2 3 1 1 8 0  
0 0 1 3  2 0 180 
0 I O  1 2  2 324 
0 1 1  2 1 1  486 
0 1 2  3 0 0 180 
0 2 0 0 1 3  180 
0 2 1 , l  0 2 324 
I O  0 1 4  0 135 
1 1  0 0 3 1 2 7 0  
I l l 1 2 0 4 8 6  
1 2  1 0  1 1  486 
1 2  2 I O  0 324 

coeff. 
121 000 
121 ow 
302 500 
550 000 
121 000 
121 WO 
302500 

71 500 
220000 
550000 
550000 
302500 

Table A3. Combinations of vj and 1, yielding (435). The caefficient associated with each 
combination is given in the last two columns for series D3 and Dt0 respectively. The multiplicity 
of (435) in D3 is 3555 and in D'O 3333000. 

VI v1 u3 1, 11 13 Coeff. ' COeff. 

0 0 0 1 2  3 180 121 000 
0 0 1 2 1 2 3 2 4  302500 
0 0 2 3 0 1 1 8 0  121 000 
0 I O  0 I 4  135 71 500 
0 1 1  I O  3 270 220000 
I O  0 0 3 2 180 121 000 
I O  1 I 2  1 4 8 6  550000 
I O  2 2 I O  324 302 500 
1 1 I O  I 2  446 550000 
1 1  2 1 1  0 1 4 8 6  550000 
2 0 I O  3 0 , 1 8 0  121 000 
2 1 2  0 I O  324 302500 
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Table A4. Combinations of vi and 1, yielding (246}. The coefficient associated with each 
combination is given in the last two columns for series D3 and DIO respectively. The multiplicity 
of (246) in D3 is 2421 and in D'O 2060575. 

YI !4 U3 1~ 12 13 Coeff. 
0 0 0 0 4 2 9 0  
0 0 1 1  3 1 2 7 0  
0 0 .2 2 2 0 216 
0 1 1 0 2 2 3 2 4  
0 1 2  1 1  1 4 8 6  
0 1 3  2 0 0 180 
0 2 2 0 0 2 216 
1 0  1 0  4 0 135 
1 1 2 0 2 0 3 2 4  
1 2  3 0 0 0 180 

CWR. 

39325 
WO 000 
166375 
302 500 
550 OW 
121 OW 
166375 
71 500 

302 500 
121 ow 

Table AS. Combinations of U, and 1: yielding L?551. The coefficient associated with each .~ . 
combinauon i s  given in the last two col t"  for seeer D3 and 0" respectivel). The multiplicity 
of (255)  In D 3  is 2610 MO in DID 2313520. 

"I 9 Y I1 (2 13 coeff. CWfL 
0 0 0 1 4  1 1 3 5  71 500 
0 0 1 2 3 ~ 0  180 121 000 
0 1 0 0~ 3 2 180 121 000 
0 1 1  1 2  1 4 8 6  550 000 
0 1 2  2 1 0  324 302 500 
0 2 1 0  1 2  324 302 500 
0 2 2 1 0  1 3 2 4  302 500 
1 0  0 0 ~ 5  0 63 20 020 
1 I 1 0 3 0 2 7 0  220 000 
1 2  2 0 I O  324 302 5W 

Table A6. Combinations of ui and li yielding (336). The coefficient associated with each 
combination is given in llie last two columns for series D3 and D'O respectively. The multiplicity 
of (336) in D3 is 2792 and in DIO 2516800. 

VI !a 9 11 (2 h Coeff. Coeff. 
0 0 0 0 3 3 1w 48 400 
0 0 1 1  2 2 324 302500 
0 0 2 2 1 1  324 302500 
0 0 3 3 0 0 100 48 400 
0 1 1 0  1 3  270 W0000 
0 1 2  1 0  2 324 302500 
1 0  1 0  3 1 2 7 0  220000 
1 0  2 1 2  0 324 302500 
1 1  2 0 1 1  486 550 000 
1 1 3 1 0 0 2 7 0  220 WO 
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